

Seeing the buildings, forests, and trees: mapping WUI environments and losses after wildfire events

Miranda Mockrin, Northern Research Station Volker Radeloff and Sebastian Martinuzzi, UW-Madison Todd Hawbaker, USGS

About Us

Miranda Mockrin, Research Scientist, Northern Research Station, USDA FS Volker Radeloff and Sebastian Martinuzzi, University of Wisconsin - Madison Todd Hawbaker, USGS, Lakewood, CO

Work focus areas:

- WUI mapping and remote sensing
 - Radeloff et al 2018, USGS project using Microsoft buildings data
- Building loss and recovery after wildfires
 - Alexandre et al 2015, Mockrin et al 2016, 2018
- Understanding why and where buildings burn
 - Alexandre et al 2016, Kramer et al 2018, Kramer et al 2019
- Wildfire detection/post-fire vegetation mapping
 - Hawbaker et al. 2017, 2020

Title: Seeing the buildings, forests, and trees: mapping WUI environments and losses after wildfire events (national)

The Idea

Where are we losing buildings to wildfire, and why?

Currently: Forest Service and partners – spend billions on suppression, with 20,000 buildings lost in 2018. Yet, we largely rely on in situ post-fire surveys of building loss and fuels, or manual digitizing of buildings lost from high-resolution imagery.

NIST Technical Note 1909

2011 Wildland Urban Interface Amarillo Fires Report #2 – Assessment of Fire Behavior and WUI Measurement Science

The Idea

Building data

Remote sensing offers new opportunities to map both buildings and vegetation, before and after fire:

- Object-based aerial image classification for building damage, destruction, rebuild/new
- Pre-fire vegetation density using objectbased classification and existing LiDAR
- Develop predictive models of wildfire outcomes
 - Integrate with suppression, if possible

International Journal of Wildland Fire 2020, 29, 174–189 https://doi.org/10.1071/WF19041

Object-based post-fire aerial image classification for building damage, destruction and defensive actions at the 2012 Colorado Waldo Canyon Fire

1.4 m Distance to shrub 0 (touching) Distance to tree Percent covered 43% Average height 4.2 m of tree over building Single family residential Year built 1949 28.2% Percent tree Percent shrub 1.8% Percent building 1.5% Percent road 0% Other impervious 1.1% 0% Percent water

What EO data does your idea utilize?

- High spatial resolution R-G-B-NIR
 - NAIP, GeoEye, Planet, QuickBird, WorldView
- LiDAR, e.g. https://usgs.entwine.io/

Issue(s) being addressed

- Wildfire impacts
- Wildfire hazard
- **Fuel loading**
- **Vegetation mapping**
- Land-use/land-cover change

2011 and 2013 NAIP imagery for part of the High Park Fire, CO (2012). Destroyed buildings circled in red.

The Idea – Outcomes / Societal Benefits

- How does this idea benefit the Forest Service and other land management agencies?
 - Help the Forest Service, other agencies, and communities strategically allocate mitigation resources to reduce future losses.
 - In a time when wildfire extent and losses continue to expand, such research is increasingly vital to **reduce wildfire risk across ownerships**.
 - Help communities enhance their resilience when rebuilding after wildfire
 - Understand development patterns near public lands
 - Contribute to remote sensing for disaster mapping broadly

an Open Access Journal by MDPI

Miranda.h.mockrin@usda.gov

