Remote Sensing Use in the USFS Forest Inventory and Analysis Program, and How NASA Can Help

Forest Inventory and Analysis Unit

Mission: To improve the *understanding and stewardship* of the nation's forests through *scientifically credible inventories* and analyses of the *status and trends* in forest condition, use and productivity, and by transferring timely resource information and new technology to the public.

This is achieved through *annual inventories* of the nation's forest resources, *analysis* of the inventory data, and *distribution* of inventory results.

Inventory Results Table:

County	Volume	Ownership	Species Group	Biomass	Mortality	Ingrowth	Har∨est	Change
1	14371	56730.39012	Oak	79605.96412	31306.28131	80121.40539	93455.01459	42831.01747
2	38948	64555.30212		12240.13443	31492.96588	13550.57375	1317.498007	60280.63085
3	31447	37208.29333	White Pine	99570.88063	6751.389567	26529.63796	68707.08833	93447.19781
4	64131	66062.35044	Red Spruce	98333.99503	59297.8659	85473.72362	58572.41038	60775.01106
5	54821	92516.30229	Birch	47001.81348	25942.92834	6631.936019	53376.34456	30212.58686

Tree and Site Variables:

- X,Y (of plot+trees)
- Tree height
- Tree diameter
- Species
- Regeneration
- Stand age
- Forest type
- Cover and Use
- Geomorphology
- Ownership
- •

Sample Intensity = 1 sample location per hexagon (2400 ha), ~5 km average spacing

Inventory Cycle Length = 5-10 years

>300,000 plots at full implementation!!

FIA production line is institutionalized...

Field Work – Remote sensing inputs

Only plots with forest

- Prescreen plots with NAIP, only visit when p(forest) > 0
- Saves time and money

Time 1

Time 2

Image-based Change Estimation:

- Cover, use and change with PI
- Point grid, 0.4-ha area
- Mid-cycle updates
- Landscape-level view

Field Work – NASA can help

Improvements to high-res imagery, LiDAR

- automated p(tree) calculation on high-res images
- segmentation tools/algorithms/ready-made products
- 3d products for decision support
- cloud-based display and processing
- High-res time series support tools, ARD

Landsat 8

Information Management, Techniques Research and Analysis–Remote Sensing Inputs

- Model-assisted estimation (post-stratification)
- Inputs for spatial modelling
- Additional data products to add context to plot data

Post Stratification

Post-Stratification: Using an attribute on a map to group and weight estimates after (post) the sample on the ground is taken.

Goal: confidence interval with stratification smaller than CI without stratification

Step 2

Step 3

$$\hat{A}_{d} = A_{T} \sum_{h}^{H} W_{h} \overline{P_{hd}} = A_{T} \overline{P_{d}}$$

$$v(\hat{A}_d) = \frac{{A_T}^2}{n} \left[\sum_{h}^{H} W_h n_h v(\overline{P_{hd}}) + \sum_{h}^{H} (1 - W_h) \frac{n_h}{n} v(\overline{P_{hd}}) \right]$$

http://www.srs.fs.usda.gov/pubs/gtr/gtr_srs080/gtr_srs080.pdf

Currently:

National Land Cover Dataset Canopy Cover products (2011, 2016), discretised into strata

With NASA's partnership:

Change maps for better estimation of change:

Inputs for spatial modelling

Inputs for spatial modelling – from NASA

- Cloud-based ARD as raster/ArcGIS server, GEE assets
- Cloud-based processing tools like AppEEARS (but with full Landsat and Sentinel records)
- Higher resolution products/algorithms

Additional data products to add context

- Climate change scenario maps
- Risk models and maps
- Urbanization predictions
- Weather/Soil Moisture data

All help us put FIA results into context

Summary

- 1. FIA is a well-oiled machine, for good and for bad.
- 2. Remote sensing products are used operationally, and can be improved by NASA products.
- 3. We like to do our own modelling, so ARD and cloud support and time series analysis tools are most helpful.
- 4. Together we can brainstorm what products can help us better deliver our missions.

Questions?
Andy Lister
andrew.lister@usda.gov