

By: Jason Sibold, Carlyn Perovich, Clay Speas, Michael Battaglia, Jake Ivan

About Me

Professor, Geography Program Director, Colorado State University

Disturbance Ecology, Rocky Mountains and Patagonia, Collaborative Land Management

Carlyn Perovich – USFS GMUG
Clay Speas – USFS GMUG
Michael Battaglia – USFS Rocky Mountain
Research Station
Jake Ivan – Colorado Parks and Wildlife

The Idea PROBLEM

- Landscape conditions for adaptive management and adaptation in a rapidly changing landscape
- Scope of Idea: multi-scale
 - landscape (core problem)
 - regional (extent and application of methods)
 - national (application of experience/theory)

The Idea PROBLEM

- Managing Western landscapes in an era of rapid change requires:
 - Adaptive, All-lands, Collaborative Approach
 - Up to date landscape-scale vegetation conditions
- Challenges:
 - Rapid change
 - Private lands
 - Cost of field sampling
 - Traditional methods are too slow to contribute to decision making
 - Traditional methods are sometime not accurate enough to guide decision making

Issues being addressed

- Forest health
- Vegetation/Habitat mapping
- Need 1: Accurate and up to date forest understory conditions are critical for habitat mapping, identifying ecological outcomes of treatments.
- Issues:
 - Challenging to map
 - Time/funding intensive
 - Rapid change

Issues being addressed

- Forest health
- Vegetation/Habitat mapping
- Need 2: Rapid and accurate information on spruce beetle spread and outbreak severity critical for managing timber production and forest regeneration.
- Issues: Current detection surveys:
 - too late
 - too fuzzy (location and severity)

What EO data does your idea utilize?

- Problem 1: Can we use LiDAR to establish baseline understory condition and frequently update those conditions?
- Problem 2: Can we use High spatial resolution R-G-B-NIR (?) to provide accurate and timely maps of spruce beetle spread (early detection) and outbreak severity?

The Idea

The Idea – Outcomes / Societal Benefits

- Problem 1: Mapping understory conditions at landscape scale:
 - Habitat/connectivity mapping (all-lands)
 - Where and how to respond to spruce beetle outbreak
- Problem 2: Mapping spruce beetle spread and severity:
 - Where and when to treat stands to maximize timber production and regeneration
- How does this idea benefit the Forest Service and other land management agencies?
 - Facilitates ability to transition to a rapid-adaptation framework for management and planning
 - Avoids conflict/decreases hurdles including potential legal issues with management

Thank You!

