

Operational fuels assessments/mapping

Birgit Peterson
USGS Earth Resources Observation and Science Center

May 1, 2019

Geospatial data for vegetation, fuels and burn severity mapping

- Characterize landscape composition comprehensively over large areas – regional to national scale
- Provide consistent (i.e., comparable) data/products over space (and time)
- Promote understanding of regional and temporal trends

Challenges

- Determining how best to mine data sources to capture metrics most meaningful to product users – simplicity is key
- Maintaining currency of data products over a constantly changing landscape
 - Capture change (e.g., disturbance or transitions) in the landscape in a timely fashion
 - Explore integration of newest data and new data sources

Remote sensing

- Remotely sensed data drive EROS data products
 - Sensors provide consistent, repeatable and current data
 - Allow monitoring over space (i.e., "all lands") and time
 - Explore how to derive information needed from data provided
 - Incorporate other data sources as needed (e.g., field observations)

Landsat Imagery Time Series

Lidar point cloud

LANDFIRE

Objectives

- Assess vegetation, fuel and ecosystem conditions on national scale
- Implement national wildland fire policies

24 primary data products, 30 m nominal resolution nationwide

- Vegetation type, structure, and succession
- Fuels (surface and canopy)
- Fire regime conditions

Intended applications

- Fire hazards
- Fuel reduction
- Incident planning
- National strategic planning
- Ecosystem restoration
- Other environmental/ resource management applications

LANDFIRE

- Initial Base Map circa 2001
- Biennial Update Products
- LANDFIRE Remap new base map to represent current status
 - Prototyping results informing production effort
 - Addressing user concerns
 - Still driven by Landsat imagery and vast database of field observed data
 - Incorporating new data and techniques

Mapping structure with lidar

Impact of vegetation structure on fire behavior modeling

Wildland fuels mapping

- Understory fuels mapping in Superior National Forest
 - Balsam fir encroachment
 - Ladder fuel
 - Susceptible to Spruce budworm
 - Lack of good maps showing Balsam fir in understory

Balsam fir understory cover

Burn severity

Monitoring from the ground and from above

Operational burn severity mapping

Legion Lake fire – classified burn

severity

CBI vs dNBR – Thematic resolution

CBI vs dNBR – Thematic resolution

Lidar profiles

Methods

Results

Thank you

