

OBI-WAN Forest Carbon Reporting

OBI-WAN

Online Biomass Inference using Waveforms And i Nventory

Sean Healey, Paul Patterson, Göran Ståhl, Svetlana Saarela, Zhiqiang Yang, Sören Holm, Ralph Dubayah, GEDI Science Definition Team

Whether we care about a 1-km grid cell or a national forest, we need a strategy for turning spatially discontinuous height measurements into population estimates of mean aboveground biomass

Hybrid inference: when we have at least 2 GEDI ground track in a 1km cell

The GEDI Waveform Simulator has been published

Hancock, S., Armston, J.,
Hofton, M., Sun, X., Tang, H.,
Duncanson, L., et al. (2019). The
GEDI simulator: A large-footprint
waveform lidar simulator for
calibration and validation of
spaceborne missions. Earth and
Space Science, 6, 294—
310. https://doi.org/10.1029/2018
o.

EA000506

10

20

30

DN

Sierra Nevada

40

20

40

DN

Hubbard Brook

LVIS

60

Simulation

ALS ground

80

30 1

20

10

Height (m)

Generalized Hierarchical Model-Based Inference: uses ancillary data from wall-towall imagery

Supplementing GEDI with wall-to-wall imagery will allow us to make estimates for areas obscured by clouds and may reduce our standard errors

Hierarchical Model-Based Inference

- Model biomass: ground → GEDI
 → Local Landsat (or NISAR,
 Sentinel or other sensors)
- Account for multiple levels of model uncertainty
- Add up the Landsat-scale predictions

Saarela et al. (2016) *Annals of Forest Science* Saarela et al. (2018) *Remote Sensing*

There is no reason hierarchical modelbased inference should be limited to grid cells

OBI-WAN

- 1. User inputs shapefile to a Google Earth Engine app (200-hectare minimum)
- 2. OBI-WAN accesses GEDI's plot/model/lidar database, supplemented with Landsat archive stored on Google Earth Engine
- 3. Uncertainty is tracked through hierarchical model-based inference
- 4. Customized forest biomass report is generated, including estimates of mean biomass, standard error of the mean, and thorough documentation

Potential applications of OBI-WAN include reporting carbon stocks for:

- Forest reserves
- Individual companies
- Municipalities from villages to countries

For the Forest Service, OBI-WAN might fill a need for carbon density information not met by FIA at the watershed level (via the Watershed Condition Classification effort) or district scale (for Planning Rule assessments)

Estimates of forest carbon will be available through OBI-WAN starting in mid-2020

Contact:

seanhealey@fs.fed.us

OBI-WAN is a NASA CMS project, and is also supported by the GEDI Science Definition Team

