

28. Testing ICESAT2 Data for Supporting Tree Canopy Cover Data

By: Kevin Megown, Stacie Bender, Karen Schleeweis, Mark Finco, Bonnie Ruefenacht

PRTMENT OF AGRICU

About Us

Kevin Megown

Program Lead

Resource Mapping Inventory and Monitoring (RMIM).

USDA Forest Service, Geospatial and Technology Applications Center (GTAC)

RMIM Program

Existing Vegetation Data (*Tree Canopy Cover).

Bonnie Ruefenacht PhD - RedCastle Resources, Senior Remote Sensing Specialist Karen Schleeweis PhD - Forest Inventory and Analysis (FIA) Program, USFS Rocky Mountain Research Station

Mark Finco, PhD - RedCastle Resources, Principle Investigator Stacie Bender - GTAC Program Assistant, Geospatial Specialist

The Idea

Rico, and the U.S. Virgin Islands (Credit: USFS/GTAC)

28. Testing ICESAT2 Data for Supporting Tree Canopy Cover Data

- TCC data for:
 - CONUS, coastal Alaska, U.S. Virgin Islands, and Puerto Rico
- Research for:
 - Advancing science for National "Tree" data
 - Improvements to the processing of 9 billion pixels
 - Interior Alaska
 - Improving reference data

The Idea

28. Testing ICESat-2 ATL8 and ATL18 data for Supporting Production of Tree Canopy Cover Data

- Canopy Cover measurements
 - Sampling in the ATL08 algorithm leads to over-estimation of canopy cover as canopy cover increases (compared to the airborne lidar truth of what was produced for each footprint) (Neuenschwander &Pitts, 2019).
- Vegetation Height
 - · Photon counting to create height histograms
 - Ability to capture true canopy top, vertical sampling error, will vary by forest type.
- Potential to increase TCC Product Resolution & Consistency
 - 17 20m laser return footprint over 3 year mission.
 - Repeat measurements
 - Atlas spatial interpolation is similar to GLAS which has proven useful for broad scale mapping.
- Test footprint returns in different forest landscapes
- Create and test gridded products to support TCC time-series modeling

Neuenschwander and Magruder 2019

ssues Addressec

Issue(s) being addressed

The Idea

- Wildfire hazard
- Fuel loading
- Wildfire impacts
- Forest health
- Water and aquatic resources
- Climate and drought
- Soil moisture
- Vegetation mapping
- Carbon emissions and flux
- Rangeland management
- Other

What EO data does your idea utilize?

- Landsat
- Sentinel-1
- Sentinel-2
- MODIS
- VIIRS
- ECOSTRESS
- SMAP
- ICESat-2
- GOES-R
- JPSS
- SRTM
- High spatial resolution R-G-B-NIR
- LiDAR
- Imaging Spectroscopy
- UAVSAR
- Uncertain looking for guidance

The Idea

The Idea – Outcomes / Societal Benefits

- Expected management and/or decision support outcomes
 - Utilize ICESat-2 data in production of TCC data
 - consistency and timeliness of the TCC product
 - Advance science towards higher resolution TCC products
 - Advance science towards multiple metrics of structure for TCC products
 - Advance product to account for temporal vegetation cover change
- How does this idea benefit the Forest Service and other land management agencies?
 - Freely available
 - Part of NLCD supported by MRLC (more than 700 public downloads a month)
 - All lands data
 - Improved stratification layer (Tree Canopy Cover) using National inventory data

Thank You!

